90

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Estrada, B., Aroca, R., Maathuis, F. J. M., Barea, J. M., & Ruiz-Lozano, J. M., (2013).

Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize

tolerance to salinity through improved ion homeostasis. Plant Cell Environ., 36, 1771–1782.

Faber, B. A., Zasoski, R. J., Munns, D. N., & Shackel, K., (1991). A method for measuring

hyphal nutrient and water uptake in mycorrhizal plants. Can. J. Bot., 69, 87–94.

Fougnies, L., Renciot, S., Müller, F., Plenchette, C., Prin, Y., De Faria, S. M., Bouvet, J. M., et

al., (2006). Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance

in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza, 17, 159–166.

Friesen, M. L., Porter, S. S., Stark, S. C., Von, W. E. J., Sachs, J. L., & Martinez-Romero,

E., (2011). Microbially mediated plant functional traits. Annu. Rev. Ecol. Evol. Syst., 42,

23–46.

Gadkar, V., & Rillig, M. C., (2006). The arbuscular mycorrhizal fungal protein glomalin is a

putative homolog of heat shock protein 60. FEMS. Microbiol. Lett., 263, 93–101.

Gagné-Bourque, F., Mayer, B. F., Charron, J. B., Vali, H., Bertrand, A., & Jabaji, S., (2015).

Accelerated growth rate and increased drought stress resilience of the model grass

Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One, 10, e0130456.

Ghanem, M. E., Albacete, A., Smigocki, A. C., Frebort, I., Pospısilova, H., Martınez-Andujar,

C., Acosta, M., et al., (2011). Root-synthesized cytokinins improve shoot growth and fruit

yield in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot., 62, 125–140.

Gill, S. S., & Tuteja, N., (2010). Reactive oxygen species and antioxidant machinery in abiotic

stress tolerance in crop plants. Plant. Physiol. Biochem., 48, 909–930.

Glick, B. R., Cheng, Z., Czarny, J., Cheng, Z., & Duan, J., (2007). Promotion of plant growth

by ACC deaminase-producing soil bacteria. Eur. J. Plant. Pathol., 119, 329–339.

Glick, B. R., Penrose, D. M., & Li, J., (1998). A model for the lowering of plant ethylene

concentrations by plant growth-promoting bacteria. J. Theor. Biol., 190, 3–68.

Gond, S. K., Torres, M. S., Bergen, M. S., Helsel, Z., & White, J. F., (2015). Induction of salt

tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea

agglomerans. Lett. Appl. Microbiol., 60, 392–399.

González-Guerrero, M., Escudero, V., Saéz, Á., & Tejada-Jiménez, M., (2016). Transition

metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and

rhizobia. Front. Plant. Sci., 7, 1088.

González-Teuber, M., Pozo, M. J., Muck, A., Svatos, A., Adame-Alvarez, R. M., & Heil, M.,

(2010). Glucanases and chitinases as causal agents in the protection of Acacia extrafloral

nectar from infestation by phytopathogens. Plant. Physiol., 152, 1705–1715.

Gulyani, V., Kushwaha, H. R., & Kumar, P., (2018). Role of phytohormones in plant defense:

Signaling and cross talk. In: Singh, A., & Singh, I. K., (eds.), Molecular Aspects of Plant-

Pathogen Interaction (pp. 159–184). Springer Nature; Singapore.

Guo, Y., Ni, Y., & Huang, J., (2010). Effects of rhizobium, arbuscular mycorrhiza and lime

on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop.

Grasslands, 44, 109–114.

Hajiboland, R., Joudmand, A., Aliasgharzad, N., Tolrá, R., & Poschenrieder, C., (2019).

Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing

resistance as a substitute for acclimation treatment in barley. Crop. Pasture Sci., 70,

218–233.

Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M., (2013).

Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants.

Int. J. Mol. Sci., 14, 9643–9684.