90
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Estrada, B., Aroca, R., Maathuis, F. J. M., Barea, J. M., & Ruiz-Lozano, J. M., (2013).
Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize
tolerance to salinity through improved ion homeostasis. Plant Cell Environ., 36, 1771–1782.
Faber, B. A., Zasoski, R. J., Munns, D. N., & Shackel, K., (1991). A method for measuring
hyphal nutrient and water uptake in mycorrhizal plants. Can. J. Bot., 69, 87–94.
Fougnies, L., Renciot, S., Müller, F., Plenchette, C., Prin, Y., De Faria, S. M., Bouvet, J. M., et
al., (2006). Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance
in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza, 17, 159–166.
Friesen, M. L., Porter, S. S., Stark, S. C., Von, W. E. J., Sachs, J. L., & Martinez-Romero,
E., (2011). Microbially mediated plant functional traits. Annu. Rev. Ecol. Evol. Syst., 42,
23–46.
Gadkar, V., & Rillig, M. C., (2006). The arbuscular mycorrhizal fungal protein glomalin is a
putative homolog of heat shock protein 60. FEMS. Microbiol. Lett., 263, 93–101.
Gagné-Bourque, F., Mayer, B. F., Charron, J. B., Vali, H., Bertrand, A., & Jabaji, S., (2015).
Accelerated growth rate and increased drought stress resilience of the model grass
Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One, 10, e0130456.
Ghanem, M. E., Albacete, A., Smigocki, A. C., Frebort, I., Pospısilova, H., Martınez-Andujar,
C., Acosta, M., et al., (2011). Root-synthesized cytokinins improve shoot growth and fruit
yield in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot., 62, 125–140.
Gill, S. S., & Tuteja, N., (2010). Reactive oxygen species and antioxidant machinery in abiotic
stress tolerance in crop plants. Plant. Physiol. Biochem., 48, 909–930.
Glick, B. R., Cheng, Z., Czarny, J., Cheng, Z., & Duan, J., (2007). Promotion of plant growth
by ACC deaminase-producing soil bacteria. Eur. J. Plant. Pathol., 119, 329–339.
Glick, B. R., Penrose, D. M., & Li, J., (1998). A model for the lowering of plant ethylene
concentrations by plant growth-promoting bacteria. J. Theor. Biol., 190, 3–68.
Gond, S. K., Torres, M. S., Bergen, M. S., Helsel, Z., & White, J. F., (2015). Induction of salt
tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea
agglomerans. Lett. Appl. Microbiol., 60, 392–399.
González-Guerrero, M., Escudero, V., Saéz, Á., & Tejada-Jiménez, M., (2016). Transition
metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and
rhizobia. Front. Plant. Sci., 7, 1088.
González-Teuber, M., Pozo, M. J., Muck, A., Svatos, A., Adame-Alvarez, R. M., & Heil, M.,
(2010). Glucanases and chitinases as causal agents in the protection of Acacia extrafloral
nectar from infestation by phytopathogens. Plant. Physiol., 152, 1705–1715.
Gulyani, V., Kushwaha, H. R., & Kumar, P., (2018). Role of phytohormones in plant defense:
Signaling and cross talk. In: Singh, A., & Singh, I. K., (eds.), Molecular Aspects of Plant-
Pathogen Interaction (pp. 159–184). Springer Nature; Singapore.
Guo, Y., Ni, Y., & Huang, J., (2010). Effects of rhizobium, arbuscular mycorrhiza and lime
on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop.
Grasslands, 44, 109–114.
Hajiboland, R., Joudmand, A., Aliasgharzad, N., Tolrá, R., & Poschenrieder, C., (2019).
Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing
resistance as a substitute for acclimation treatment in barley. Crop. Pasture Sci., 70,
218–233.
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M., (2013).
Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants.
Int. J. Mol. Sci., 14, 9643–9684.